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A major problem in the transportation, transfer and storage of bulk chemicals is the 
problem of catastrophic instability under unforeseen situations. Numerous calculated 
thermodynamic, experimental, and structural parameters were evaluated for their ability 
to predict in advance the stability (self-reactivity) of such chemical substances in order 
to be able to avoid the undesirable situations. It was concluded that the relationship be- 
tween the parameters considered and chemical stability is too obtuse for ready conventional 
statistical analysis. Subsequently, pattern recognition techniques were employed for 
statistical analyses and 13 of the more promising parameters were evaluated with consider- 
able success. Total under- and overestimation error was less than 10% relative to generally 
accepted consensus grading into three stability categories: (1) explosive, (2) hazardous 
polymerization or decomposition, and (3) nonhazardous. The methods, therefore, seem 
to have great potential for use in minimizing hazards in the transportation, transfer and 
storage of chemicals. 

Introduction 

The original purpose was to evaluate and optimize existing computer codes 
based on classical thermodynamics in regard to their ability to predict chemical 
stability. Although a number of computer codes, and in a few cases combinations 
of calculated and experimental parameters, have been suggested [l-5] for 
hazard prediction, there has been no systematic effort to evaluate the relative 
power of these approaches in predicting the self-reactivity hazard posed by 
chemicals. This study had special interest in chemicals currently transported 
bulk on U.S.A. waterways, but the approach can be more generally applied. 

A number of benefits would occur if a computerized predictive approach 
for hazard evaluation of chemical systems could be demonstrated. First, 

* This research was conducted for the U.S. Coast Guard, Department of Transportation, 
under Contract DOT-CG-23223-A. 
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substantial savings in time and cost could be realized in testing of new chemicals 
and the task of evaluating the astronomical number of combinations between 
nearly 1000 chemicals now or soon to be transported in bulk. Also it has been 
estimated that over a hundred thousand new organic chemicals [6] are 
synthesized each year in the U.S. While only a fraction of these ever become 
sufficiently useful to be shipped in bulk, a low-cost way to estimate potential 
hazard at the R and D stage of development (which might entail transportation 
of relatively small, but still highly hazardous, quantities of material) would 
be valuable. 

Second, simplification and improvement of hazard rating systems could be 
undertaken. Many of the current systems are arrived at by consensus, are 
quite subjective, and may thereby impose unnecessary restrictions (e.g., trans- 
portation cost penalties) on some chemicals while allowing others to present 
excessive risks to human life, the environment, transportation facilities, and 
equipment. The cost and time penalties for such errors in current hazard 
rating systems could be reduced by an impartial but accurate computer 
assessment of hazard. 

Finally, unanticipated hazards, which might slip through an experimental 
hazard test program due to, for instance, critical sample geometry effects 
such as those frequently encountered, might be identified if a successful 
computer prediction method is possible. 

In all these potential benefit areas, even partial success of a computer 
simulation might be useful in that it could serve as a screening tool which 
would concentrate the comparatively expensive experimental evaluations on 
those chemicals which pose the greatest hazard. 

Assessment of self-reactivity energy hazard potential of chemicals has 
historically been accomplished by: 

(1) consulting consensus ratings, which incorporate inputs from full-scale 
experience, intuition, and laboratory data; or 

(2) interpretation of data from laboratory-scale experiments, only recently 
incorporating round-robin testing and standardization. 

Full-scale experiments are generally precluded due to experimental diffi- 
culties, environmental impact, and especially costs. Recently, a number of 
computational approaches have also been attempted. 

Background 

A number of recent studies have attempted to use thermodynamic evalua- 
tions to predict chemical hazard as defined by the National Fire Protection 
Association (NFPA) “reactivity” rating [1,5] or experimental shock sensitivity 
data [2]. No attempt has been reported to date, however, to correlate these 
predictions with other consensus rating systems or to assess the relative power 
of the various parameters (both calculated thermodynamic quantities and 
Arrhenius equation experimental data) which have been proposed. Since 
previous studies have all claimed some degree of success in estimating hazard, 



175 

an unbiased means of comparison is desirable. Further, since it was previously 
noted [2] that some combination of four numerical parameters from the 
American Society for Testing and Materials computer code (CHETAH) seemed 
to possess substantially better hazard correlation than could be obtained by 
considering only one or two at a time, a comparison technique capable of 
simultaneously considering a reasonable number of parameters and rating the 
relative power of each would be useful. 

For the most part, previous hazard correlation studies have not attempted 
rigorous statistical analysis because classical techniques would have indicated, 
for the reasons previously discussed, less favorable results than could be 
intuitively drawn from the authors’ graphical presentations or simple rankings. 

Although not considered in this study or in previous, comparable studies 
[l-5] hydrodynamic computer codes developed primarily within the weapons 
industry have achieved some success in evaluating the response of explosives 
to varying stimuli. However, their use of non-ideal gas equations of state re- 
quires extensive experimental data as input (e.g. elastic constants and Cp for 
the condensed phase), thus precluding or severely limiting use of these codes 
in screening new chemicals. 

Procedure 

Consensus hazard rating system 
Current hazard rating systems exhibit a marked difference in the definition 

of terms like “reactivity”, a large difference in the degree of subjectivity 
required to assign a given chemical to a particular hazard class, and in some 
cases a lumping of more than one type of hazard into the same rating system 
to facilitate use by a particular group. 

To exemplify the diversity of these hazard rating systems, the National 
Academy of Sciences-National Research Council (NAS-NRC) [ 71 system 
breaks reactivity into five distinct rating systems: 

“Other chemical” 
“Binary compatibility” 
“Water” 
“Self” and 
“Fire”, 

whereas the National Fire Protection Association (NFPA) [ 81 lumps many 
of the same considerations into two rating systems: 

“Reactivity” (shock sensitivity, decomposition or polymerization; 
reaction with water) 

“Flammability” (ignition and explosive dusts). 
For the purposes of this study, the consolidations and equivalences shown 

in Table 1 were made between the NAS-NRC “Self” rating system and the 
NFPA “Reactivity” system. Whenever reactivity with water was felt to in- 
fluence the NFPA rating, the NAS-NRC “Water” rating was consulted and 
appropriate interpretations considered. It is felt that these consolidations 
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TABLE 1 

Consolidated rating system for NAS-NRC and NFPA reactivity 

Characterization in this study* NAS--NRC Self NFPA Reactivity 

(1) Nonhazardous 091 0 
(2) Hazardous decompositions 

or polymerizations 2.3 1,2 
(3) Explosives 4 394 

* Subjective due to inherent characteristics of consensus rating systems. 

are more than justified after consideration of the relative lack of discrimination 
between NAS-NRC “Self” grades 0 and 1 (both nonhazardous reactions) 
and grades 2 and 3 (reflecting the stabilizer requirement more than the severity 
of the chemical reaction), and between NFPA “Reactivity” grades 1 and 2 
(both capable of hazardous reactions but not explosions) and grades 3 and 
4 (both capable of explosion at unspecified levels of initiation conditions). 
It was noted, however, that there was still no complete reconciliation between 
the ratings, and differences among several of the chemicals encountered in 
this study created difficulties especially in regard to the statistical analysis. 
The methodology used was, by computerized thermodynamic models, to 
predict whether a compound was reactive or not and then to assign it a rating 
based upon statistical pattern recognition and compare the rating thus obtained 
with consensus ratings. 

Thermodynamic reactivity calculations 
The overall flow of input thermodynamic data, calculated parameters, and 

experimental data is shown schematically in Fig. 1. The various thermo- 
dynamic computer programs indicated on this chart have been described else- 
where [l-5, g-121, except for EQUICA, which was developed at Battelle 
based on the work of Cruise [ 131. However, an overall comparison has not 
been previously accomplished. In terms of the algorithm used to compute 

Fig. 1. Flow of input data, calculated parameters and experimental data. 
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the thermodynamic equilibrium conditions, these codes can be categorized 
as using minimization of Gibbs free energy (designated AG min.), the modified 
equilibrium constant approach (designated “mod. K”), or enthalpy maximi- 
zation (designated AH max.), as indicated in Table 2. CHETAH also calculates 
two additional hazard criteria, oxygen balance and enthalpy of combustion. 

TABLE 2 

Categorization of thermodynamic codes 

Code Characteristic 

AG min. mod. K AH max. 

(A) Classical thermodynamic 
NASA X 
NOTS X 
TIGER X 
EQUICA X 

(B) Modified thermodynamic 
CHETAH X 

The comparative flexibility of these codes is shown in Table 3. In order to 
cover the possible range of types of calculations, either the NASA or TIGER 
codes plus CHETAH are indicated. Since only enthalpy--pressure (HP) calcu- 
lations and entha.lpy maximization (CHETAH) have been employed in hazard 
modeling in the past however, NOTS could also be used. 

TABLE 3 

Comparative flexibility 

Type calculation* NASA TIGER NOTS CHETAH EQUICA 

TP X X X X 
HP X X X 
SP X X 
TV X X X 
UV X X 
sv X X 
Hmax. X 

*The symbols T, P, H, S, U, and V relate to the conventional thermodynamic properties 
shown as follows: T: Temperature (K); P: Pressure (atm); H: Enthalpy (kcal/mole); S: 
Entropy (kcal/mole-K); V: Specific volume (m’/kg); U: Internal energy (kcal/mole). 

Specification of any two in the pairs shown defines the thermodynamic 
system. In order to select which code(s) to use on this study, other criteria 
were also considered (Table 4). 
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TABLE 4 

Criteria used to select code(s) for this study 

Code for reactivity calculations Ease of use Public availability 

NASA-LRC 1 1 
NOTS 2 2 
EQUICA 2 3 
TIGER 3 3 
CHETAH 1 1 

Key: 1 = good; 2 = fair; 3 = bad. 

Theoretically, it would be expected that each code would give identical 
results for the same type of calculation regardless of the algorithm used. To 
confirm this, representative compounds were run on various codes and 
comparisons of predicted decomposition temperatures (Table 5), equilibrium 
composition (Table 6), and other parameters were made. NASA code was 
subsequently selected for use in this study (in conjunction with CHETAH) 
for the following reasons: 

(1) Maximum flexibility; 
(2) Superior ease of use and compatibility with Battelle’s Control Data 

Computer system; 
(3) Superior public availability (National Technical Information Service); 
(4) Incorporation of a “trace” option enabling prediction of low concen- 

tration combustion products. 
Minor modification of this code (< - a dozen additional FORTRAN state- 

ments) was required to calculate pressures for the reaction products at equi- 
librium temperatures in a molar volume using the ideal gas equation of state 
and reaction enthalpies (AH, ): 

NP NR 

AH, = c C,H, - c CjHj 
i=l j=l 

TABLE 5 

Comparison of temperatures and decomposition, TD, calculated by NOTS and NASA codes 

Chemicals NOTS NASA 
TD,K TD,K 

Nitroethane 1161 1161 
Epichlorohydrin 1042 1042 
Acrylonitrile 1896 1891 
Nitrobenzene 1540 1538 
Acetic acid 652 655 
Butyraldehyde 800 801 
Propylene oxide 951 951 
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TABLE 6 

Comparative equilibrium composition calculation (thermal decomposition of acrylonitrile 
at 1300 K and 1 atm pressure) 

Species Concentration of species (moles) 

EQUICA NASA 

HCN 3.459 x 10-s 

NH, 1.746 x 1O-5 
c(s) 6.004 x 10-l 

HZ 2.970 x lo-’ 

N, 1.004 x lo-’ 

CH, 2.121 x lo-$ 
H 4.503 x lo-’ 

C,H, 1.789 x lo-’ 

CH, 4.831 x 10-O 
H,N 2.699 x lo-‘_’ 

3.5258 x lo-’ 
1.6047 x lo-* 
6.0034 x 10-l 
2.9756 x 10-l 
1.0032 x 10-l 
1.7257 x lo-$ 
3.7969 x lo-’ 
2.0284 x lo-’ 
5.1507 x lo-’ 
3.0380 x lo-” 

where NP = number of products, NR = number of reactants, C = moles of 
species, H = enthalpy of formation of species at 298 K from elements in 
standard states. 

Decomposition and stoichiometric oxidation reaction calculations were 
accomplished in the CHETAH and NASA codes, inputing 1 mole quantities 
of each of the 20 chemicals selected for reactivity study. Whenever available, 
enthalpies of formation for the compound’s transportation state (solid, 
liquid or gas) were used as input to the NASA code for the HP-type calculation; 
however, it was noted that the calculated parameters were highly dependent 
on the state and associated enthalpy of formation. It was discovered that 
calculated parameters were dependent on the precision carried through the 
calculations and also on the species considered. For example, identical results 
were achieved as previous studies [l] when the same precision and products 
were considered, but when more product species and greater mathematical 
precision were employed, results differing as much as 5% were obtained. For 
the most part, however, virtually identical results were obtained as shown in 
Table 7 for acetylene. 

Statistical evaluation 
Early in the course of this study, it was recognized that the relationship 

of hazard with the calculated and experimental parameters was too subtle to 
be amenable to standard statistical evaluation. Hence, pattern recognition 
techniques were employed in the statistical evaluations of this study. 

The basic premise of pattern recognition is that the samples can be con- 
sidered in an abstract mathematical sense as points in an n-dimensional space 
(hyperspace), with coordinates which are related to the measured or calculated 
parameters [14-181. The objective is then to determine if the parameters are 
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TABLE 7 

Results obtained for acetylene using NOTS and NASA codes 

Property * Units 

TD K 

HD kcal/mole 

PD atm 

To K 

Ho kcal/mole 

PO atm 

Definition NOTS NASA 

Temperature of decomposition 2898.3 2900 
Enthalpy of decomposition -48.3 -48.2514 
Pressure of decomposition 10.3 10.2514 
Temperature of oxidation 3341.4 3341 
Enthalpy of oxidation -116.9 -116.9132 
Pressure of oxidation 49.6 49.623 

*Same species as Stull [ 11. 

sufficient to properly place the samples in unique classes and which parameters 
are most important for this classification. 

A comparison of pattern recognition uersus classical statistics reveals a 
number of common elements and several elements of artificial intelligence 
unique to pattern recognition (Table 8). In general, classical statistics is preferred 
because of the concept of “confidence levels”, which can be applied to most 
data sets being evaluated. However, when the relationship between the variables 
is obtuse, the greater power of pattern recognition will enable useful relation- 
ships to be derived whereas the classical approaches will fail. The subjective 
confidence criteria based on experience in the case of pattern recognition 
analysis imposes additional concern that a “representative” sample as large as 
possible be used in the analysis. 

TABLE 8 

Comparison of pattern recognition and classical statistics 

PATTERN RECOGNITION VERSUS CLASSICAL STATISTICS 

Common elements 

Variance 
Covariance 
Principal component analysis 
Linear discriminant classification 

Unique elements of artificial intelligence in P.R. 

Linear learning matching 
(negative feedback training) 

Piece-wise continuous threshold logic units 

4 

Adaptive learning networks 

+ 

Pattern recognition classification 
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Findings 

Previous work evaluation 
Reevaluation of previous computational approaches to model the NFPA 

reactivity rating [ 1,4] resulted in considerable scatter using this study’s con- 
solidated rating system.The (To-T, ) versus TD plot, as originally proposed 
by Stull [l] to place chemicals into risk categories where the risk is proportional 
to the zone number, shows a characteristic degree of scatter for 45 chemicals 
listed in Table 9 when only these two variables are considered (Fig. 2) and the 
same scatter was noted on the original plot. Especially disconcerting about 
this is the degree to which explosive chemicals (NFPA grades of 3 and 4) are 
intermixed with the nonexplosives. However, upon instituting the pattern 
recognition techniques [ 161 and using all 6 variables simultaneously ( TD ,H, , 
P,,To, Ho and Pg)for the same 45 NFPAgraded chemicals, only 3 classification 
errors remained using binary linear classification [ 161 : 

Compound Actual Grade Computed Grade 

Acetylene 3 2 
1,3-Butadiene 2 1 
Styrene 2 1 

This corresponds to about 7% underestimation of hazard, nil overestimation, 
and 7% total error. The relative power of the variables was evaluated by the 
pattern recognition program and found to be 

Ho 0.77, PD 0.60, Ho 0.25, 
PO 0.70, To 0.44, To 0.08. 

It should be noted that only monomers were incorrectly classified. 

3000 r o NFPA 0 
+ NFPA 1 q nd 2 
o NFPA 3 and 1 

2500- 0 

2000 - 

1000 1500 2000 2500 
T (D) 

Fig. 2. Scatter in hazard data using plot of To-TD versus To and consolidated NFPA rating. 
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TABLE 9 

NFPA-rated chemicals originally evaluated by Stull [ 1 I 

Glycol dinitrate 
Nitrocellulose 14.14% 
Manitol hexanitrate 
Dipentaerythritol hexanitrate 
Gylcerolmonolactate trinitrate 
Nitroglycerine 
Polyvinyl nitrate 
Tetryl 
Beta HMX 
Cyclonite RDA 
1,3,5-TriaminoZ,4,6--trinitrobenzene 
1,3-Diamino-2,4,6-trinitrobenzene 
Metriol Trinitrate 
Nitroguanidine 
Ethylenedinitramine 
Ammonium picrate 
2,4,6-Trinitroaniline 
1,2,4_Butanetrioltrinitrate 
Ammonium perchlorate 
Picric acid 
Ammonium nitrate 
Diethyleneglycol dinitrate 
Triethyleneglycol dinitrate 

2,4,6l”rinitrotoluene 
2,4-Dinitrophenol 
Acetylene 
Nitroethane 
Hydrogen cyanide 
Allene 
Methylacetylene 
1,3-Dichloropropene 
1,3-Butadiene 
Styrene 
4-Nitroaniline 
Cyclopropane 
Biphenyl 
Benzene 
Butene-1 
Aniline 
1,3-Dichloropropane 
Acetone 
Propane 
Octane 
Cellobiose (wood) 
Acetic acid 

Current work 
In view of the lack of clear discrimination (clustering tendency) between 

the hazard grades, it was decided to increase the sample size as much as possible 
beyond the 20 compounds originally selected for this study (Table 10). 

TABLE 10 

Original chemicals for reactivity study 

Acetaldehyde Nitroethane 
Acrylonitrile Nitromethane 
Adiponitrile Nitropropane 
Epichlorohydrin Propargyl bromide 
Ethylene oxide Styrene 
Ethylenimine Sulfur dioxide (liquid) 
Hydrazine Tetraethyl lead 
Hydrogen peroxide, 50% 2,4-toluene diisocyanate 
Methyl vinyl ketone Vinylidene chloride 
Mononitrobenzene White phosphorus 

Consideration of the 20 chemicals originally selected for this study plus 
the 45 of Stull [l] just discussed resulted in the errors shown in Table 11 
using the binary linear classification method of pattern recognition. 
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TABLE 11 

The errors resulting using the binary linear classification method of pattern recognition 
on the six Stull [l] parameters 

Compound Consensus Pattern recognition 
grade computed grade 

Acetylene 
1,3-Butadiene 
Styrene 
Tetraethyl lead 

Total underestimated 

Hydrogen cyanide 
Hydrazine 
Epichlorohydrin 
Adiponitrile 

Total overestimated 

1,3-Dichloropropene 
4-Nitroaniline 
Propargyl bromide 

Total ND* 

ND* 
ND* 
ND* 

*No decision. 

Calculation of errors thus gives about 6% underestimated, 6% overestimated, 
and about 12% total combined error. Again, a significant portion of the total 
error was due to monomers. The relative power of the six parameters on this 
data set was found to be essentially the same as before: 

Ho 0.66, PD 0.45, % 0.27, 
PO 0.64, To 0.36, TO 0.22. 

Other previous work [4] to model the NFPA reactivity rating using a 
“reaction hazard index” (RHI) based on the parameters of temperature of 
decomposition (T, ) and activation energy (EA ) of the Arrhenius equation 
also shows considerable scatter. For example, an RHI of 3.5 in that work 
could be interpreted as an NFPA reactivity rating of 0, 1,2,3, or 4. Using 
pattern recognition of these same parameters and 43 of the same compounds, 
the errors shown in Table 12 were observed using binary linear classification 
pattern recognition. 

All kinetic data were taken from critically assessed compilations by Stull 
[4] or Benson [ 221. 

This corresponds to about 20% underestimation error and about 15% over- 
estimation error for a total error of about 35%. The relative power for the 
parameters was: 

TD 0.85, 
E, 0.38. 
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TABLE 12 

The errors observed using binary linear classification pattern recognition on TD and EA 

Compound Consensus Pattern recognition 
grade computed grade 

Underestimated 

Acetic acid 2 
Diethyl carbonate 2 
Isopropyl ether 2 
Ethylene oxide 3 
Nitroethane 3 
1-Nitropropane 3 
Tert-butyl peroxide 3 
Tert-butyl hydroperoxide 3 
Diethyl peroxide 3 

Total underestimated 9 

Overestimated 

Formic acid 1 
Cyclopropane 1 
1-Butone 1 
Toluene 1 
Dicyclopentadieneendo 2 
Vinyl ally1 ether 2 

Total overestimated 6 

Incorporating an additional term of the Arrhenius rate equation, the pre- 
exponential log A factor, along with T,, and EA on these same 43 compounds 
gave the errors shown in Table 13 using binary linear classification. 

The incorporation of the log A factor thus improves the underestimation 
error to about 15% from 20%, the overestimation error to about 10% from 
15% and the overall error to 25% from 35%. The relative power of each of 
these parameters was: . 

TD 0.85, 
EA or ED 0.38, 
log A 0.29. 

Using CHETA parameters, NAS-NRC ratings, and 26 chemicals selckted 
for this study plus 19 from another recent study [9], the errors shown in 
Table 14 were observed using binary linear classification. 

These result in about 7% overestimated and 13% underestimated for a 
total error of 20%. With the CHETAH parameters nearly all the error was 
again associated with monomers. All four parameters seemed to have about 
equal weight as shown below: 



185 

TABLE 13 

The errors found by adding log A to TD and EA, using binary linear classification 
classification 

Compound Consensus Pattern recogrbition 
grade computer grade 

Underestimated 

Acetic acid 2 1 
Propylene 2 1 
fso-propyl ether 2 1 
Ethylene oxide 3 2 
Nitroethane 3 2 
l-Nitropropane 3 2 

Total underestimated 6 

Overestimated 

Cyclopropane 1 2 
l-Butene 1 2 
Tert-amylacetate 1 2 
Dicyclopentadine 2 3 

Total overestimated 4 

TABLE 14 

The errors found using binary linear classification on four CHETAH parameters 

Compound Consensus Pattern recognition 
grade computed grade 

Underestimated 

Ethylene oxide 3 2 
Epichlorohydrin 2 1 
Methyl vinyl ketone 2 1 
Nitrobenzene 1 2 
Btyrene 2 1 
Vinyl acetate 2 1 

Total underestimated 6 

Overestimated 

Hydrazine 2 3 
Vinylidene chloride 2 3 
Vinyl chloride 2 3 

Total overestimated 3 



186 

CHETAH 
criterion 

Parameter Relative power 

In order to elucidate the monomer classification problem, the six equilibrium 
parameters of Stull [l] were coupled with a free radical resonance stabilization 
factor and heat of polymerization [19-211 for the 45 compounds treated 
by Stull [l] plus 20 selected for this study. Errors were found to consist of 
those shown in Table 15. 

TABLE 15 

The errors using binary linear classification on six Stull [ 1 ] parameters plus resonance 
stabilization and heat of polymerization 

Compound Consensus Pattern recognition 
grade computer grade 

Acetylene 3 2 
Toluene-2,4diisocyanate 2 1 

Total underestimated 2 

Hydrogen cyanide 2 3 
1,3llichloropropene 2 3 
Hydrazine 2 3 
Epichlorohydrin 2 3 

Total overestimated 4 

4-nitroaniline 
Acetaldehyde 
Vinylidene chloride 
Adiponitrile 
Tetraethyl lead 

Total ND* 

*No decision. 

1 ND* 
2 ND* 
2 ND* 
1 ND* 
3 ND* 

5 

Projection of the sample points in ndimensional space into two dimensions, 
as shown in Fig. 3, provides a means of subjectively evaluating relative 
“clustering” of sample points. This has no bearing on classification and is 
merely a visual input to assist in interpretation of the complexity of the problem 
The two axes of such mappings are linear functions of the input parameters, 
but the numerous and variable processing steps make each mapping unique 
for the particular case under study. 

The pattern recognition yielded about 3% underestimation and 6% over- 
estimation for a total error of less than 10%. It was noted that substantially 
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Fig. 3. Mapping - - Stull [ 1 ] parameters, heat of polymerization 
factor. 

and resonance stabilization 

greater clustering occurred on the mapping than on previous cases, and, overall, 
the separation of explosives, hazardous self-reactive chemicals, and non- 
hazardous chemicals was quite good. 

The relative power of the parameters considered on this case was: 

Resonance 
PO 

stabilization 

Ho 
PD 
T* 
HD 
H IJob 

To 

1.15, 
0.64, 
0.63, 
0.39, 
0.31, 
0.24, 
0.24, 
0.17. 

Conclusions 

It is concluded that a new technique is in the process of development for 
the prediction of hazards associated with chemicals’ self-reactivity. On the 
basis of the reactivity studies performed in this study, it is also concluded 
that the thermodynamic parameters originally proposed by Stull and those 
of CHETAH have approximately the same power to differentiate explosive, 
hazardous, and nonhazardous chemicals, The relatively small sample size 
makes further comparison between these two highly subjective. Coupling 
Arrhenius factors with thermodynamic parameters seemed to have substantially 
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less power than these other approaches, however. Classification of the various 
parameters considered on the basis of predictive power is somewhat subjective 
in view of the variation observed from one data set to another, but three 
categories can be delineated (see Table 16). 

TABLE 16 

Relative predictive power of parameters for self-reactivity hazard 

Predictive 
power 

Resonance stabilization of free radical 

High PQ 
Ho 
Four CHETA parameters 

Medium 

PD 

i 

TD 

HD 
H polymerization 

To 
LOW 

i 
EA 
log A 

Considering the overall error of less than 10% using less than half of the 
high power parameters simultaneously, it is felt that even more favorable 
accuracy can be achieved in modeling consensus self-reactivity hazard class 
assignment. It is recommended that experimental data be used whenever 
possible to test hazard models in order to eliminate the subjectiveness and 
occasional contradiction which exist in varying degrees in the current hazard 
rating systems. It is felt that most of the nondecisions revealed in this study 
wiII be eliminated as the sample size is increased (as the pattern recognition 
program can better “learn” what a hazardous chemical is), and as more of 
the significant parameters can be simultaneously considered. 
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